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Abstract Jump deformations and contractions of Lie algebras are inverse concepts, but the
approaches to their computations are quite different. In this paper, we contrast the two ap-
proaches, showing how to compute the jump deformations from the miniversal deformation
of a Lie algebra, and thus arrive at the contractions. We also compute contractions directly.
We use the moduli spaces of real 3-dimensional and complex 3 and 4-dimensional Lie alge-
bras as models for explaining a deformation theory approach to computation of contractions.
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1 Introduction

Deformations of analytic and algebraic objects is an old problem in both mathematics and
physics. In this paper we restrict ourselves to the case of Lie algebras—one of the most
important categories in physics. On deformation theory of Lie algebras we refer to [2, 4].
The set of equivalence classes of Lie algebras over a fixed vector space is called the moduli
space of Lie algebras on that vector space. In [9, 15], the moduli space of Lie algebras
of dimension 3 was carefully analyzed, and in [10], a construction of the moduli space of
4-dimensional Lie algebras was given. The main idea which we used in our analysis was
the computation of the miniversal deformation, which allows one to determine all possible
deformations of the Lie algebra (see [3, 5]).
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From the miniversal deformation, one can determine all jump deformations of a Lie
algebra. A jump deformation is precisely the inverse of a contraction of a Lie algebra, so
one can say that miniversal deformations contain all the information about contractions as
well as other interesting information about the moduli space.

The point of view of deformation theory is a bit different from the point of view of
contractions. When computing a contraction, one has a particular Lie algebra in mind, and
wants to know all Lie algebras which can jump to the one you have in mind. This is quite
different from the perspective of deformation theory, where one is interested in seeing what
the object of question deforms to. Both perspectives give valuable insights. We should refer
to the recent work [6, 7] which compare these two concepts and also give some examples.
At the Workshop “Deformations and Contractions in Mathematics and Physics” in Ober-
wolfach in January 2006, organized by Alice Fialowski, Marc de Montigny, Sergei Novikov
and Martin Schlichenmaier, researchers from both mathematics and physics were brought
together to share the ideas coming from these two approaches. It was a valuable experience
to the authors.

In this paper, we look at some of the examples we have previously studied from the
deformation point of view, and consider both the deformation and contraction points of view.
We point out some of the advantages and disadvantages of these two approaches, illustrating
them with examples from moduli spaces of 3 and 4-dimensional Lie algebras. We also give
a description of the moduli space of real 3-dimensional Lie algebras. In [9, 10, 15], only
complex Lie algebras were studied. We also use a miniversal deformation approach to give
a complete description of the contractions of all 4-dimensional complex Lie algebras.

Some contractions can be computed by use of diagonal matrices, and in fact, if one is
clever about a choice of a basis, one can always compute contractions in this manner [18].
However, it is not true that one can compute all contractions given a fixed basis by using
diagonal matrices, and we give some counterexamples. For a direct approach of low dimen-
sional Lie algebra contractions see [13].

2 Preliminaries

Let V be a Z2-graded vector space defined over C, and denote the even and odd parts
of V by Ve and Vo, respectively. The parity reversion W = �V is given by We = Vo and
Wo = Ve; in other words, we reverse the parity of homogeneous elements of V to obtain W .
Let π : V → W be the identity; note that it is an odd map. Lie algebras are defined as
antisymmetric maps V ⊗ V → V ; that is, as elements of Hom(

∧2
(V ),→ V ). These an-

tisymmetric maps induce symmetric maps W ⊗ W → W , so a Lie algebra determines an
element in Hom(S2(W),W), where Sk(W) is the k-th symmetric power of W .

If we let E(V ) = ⊕∞
k=0

∧k
(V ) be the Z2-graded exterior algebra of V , then E(V ) can

be identified as a vector space, with S(W), where S(W) = ⊕∞
k=0 Sk(W) is the Z2-graded

symmetric algebra of W . The algebra structures of these spaces do not coincide, unless V

is a totally even space. For ordinary Lie algebras, since E(V ) and S(W) are isomorphic as
algebras, it is perfectly reasonable to work in the E(V ) picture, which is the point of view
in the classical literature, but for Lie superalgebras, there is a big advantage in working with
the S(W) picture, so we will adopt this point of view in this paper.

Any element of Hom(E(V ),V ) can be identified with an element of C(W) =
Hom(S(W),W), and therefore, a Lie algebra structure on V determines an element d in
Hom(S2(W),W). The structure d satisfies the following relation, corresponding to the Ja-
cobi identity.

d(d(a, b), c) + (−1)bcd(d(a, c), b) + (−1)a(b+c)d(d(b, c), a) = 0,
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where (−1)ab is minus one to the power of the product of the parities of a and b. Let
Ck(W) = Hom(Sk(W),W). Then C(W) = ∏∞

k=0 Ck(W). We define a product ◦ on C(W)

as follows. If ϕ ∈ Ck(W) and ψ ∈ C
l (W), then ϕ ◦ ψ ∈ Ck+l−1(W) is given by

ϕ ◦ ψ(w1 · · ·wn) =
∑

σ∈Sh(l,k−1)

ε(σ )ϕ(ψ(wσ(1) · · ·wσ(l))wσ(l+1) · · ·wσ(n)),

where n = k + l − 1 and ε(σ ) is a sign determined by the rule

wσ(1) · · ·wσ(n) = ε(σ )w1 · · ·wn.

The bracket [ϕ,ψ] is defined by

[ϕ,ψ] = ϕ ◦ ψ − (−1)ϕψψ ◦ ϕ.

This bracket equips the space of cochains C(W) with the structure of a Z2-graded Lie alge-
bra. In fact, it is well known that C(W) is naturally isomorphic to the space of coderivations
of the symmetric coalgebra S(W) of W , which is a Z2-graded Lie algebra, and the bracket
introduced above is just the bracket of coderivations [16]. In fact, any element ϕ ∈ Ck(W)

extends to a coderivation ϕ : S(W) → S(W), which by the formula

ϕ(w1 · · ·wn) =
∑

σ∈Sh(k,n−k)

ε(σ )ϕ(wσ(1) · · ·wσ(k))wσ(k+1) · · ·wn.

Accordingly, the cochains in C(W) will sometimes be referred to as coderivations.
The Jacobi identity for d is precisely the condition that [d, d] = 0. Moreover, d is odd.

We call such an odd element of C(W) a codifferential. In fact, the map D : C(W) → C(W),
given by D(ϕ) = [d,ϕ] is a differential on C(W), and is a derivation with respect to the
bracket on S(W). That is, D([ϕ,ψ]) = [D(ϕ),ψ] + (−1)ϕ[ϕ,D(ψ)]. Note that D is odd.
We call D the coboundary operator induced by d , and the homology H(D) of this differen-
tial, defined by

H(d) = ker(d)/ Im(d)

is called the cohomology of d . Since D : Ck(W) → Ck+1(W), we can also define the n-th
cohomology group Hn(d) by

Hn(d) = ker(D : Cn(W) → Cn+1(W))/ Im(D : Cn−1(W) → Cn(W)).

Only the odd part of H 2(d) and the even part of H 3(d) play a role in the theory of defor-
mations of d . For ordinary Lie algebras, H 2(d) is a completely odd space and H 3(d) is
completely even, because the parity of a cochain in Ck(W) in this case depends only on k.

An L∞ algebra is defined as a codifferential d in C(W), the only difference being that
we do not restrict d to lie in C2(W). In fact, we can express d = d1 +· · ·, where di ∈ Ci(W).
(Here, we do not allow a d0 term.) However, in the case of L∞ algebras, the cohomology
H(d) cannot be decomposed into subgroups Hn(d), and all of the cohomology plays a role
in the deformation theory. For this paper, we will restrict to Lie algebras, for simplicity, but
the main constructions extend to Lie superalgebras and L∞ algebras as well.

The importance of cohomology to deformations is illustrated by the notion of an infini-
tesimal deformation dt of d , which is given by

dt = d + tδ,



564 Int J Theor Phys (2008) 47: 561–582

where t2 = 0. The Jacobi identity [dt , dt ] = 0 reduces to the cocycle condition D(δ) = 0. To
understand why cohomology arises in the classification, we need to introduce the notion of
infinitesimal equivalence.

If g is an automorphism of W ; i.e., an invertible linear map, then g extends uniquely to an
automorphism of S(W), that is, an invertible map, compatible with the coalgebra structure of
S(W). Moreover, g acts on C(W) by the rule g∗(ϕ) = g−1ϕg. We define two codifferentials
d ′ and d to be equivalent, and write d ∼ d ′, if there is an automorphism g such that d ′ =
g∗(d). An infinitesimal automorphism of W is a map gt = 1 + tλ where λ : W → W is
linear. If we extend λ as a coderivation of S(W), then we have gt = exp(tλ). We can thus
identify λ with a cochain in C(W). Evidently, g−1

t = 1 − tλ. We have g∗
t (ϕ) = ϕ + t[ϕ,λ]

for any ϕ ∈ C(W).
Now suppose that dt = d + tδ and d ′

t = d + tδ′. Then dt ∼ d ′
t precisely when there is

some cochain λ such that δ′ = δ + D(λ), in other words, when δ′ and δ belong to the same
cohomology class. This is why we say that the infinitesimal deformations are classified by
the cohomology.

A formal deformation dt is given by a formal power series of the form

dt = d + tδ1 + t2δ2 + · · · .

The Jacobi identity for dt is equivalent to the relations

D(δn) = −1

2

∑

k+l=n

[δk, δl] = 0.

for n = 1, . . . . If the relations above hold for all n < m, then the right hand side of the
equation is a cocycle, but the fact that it is a coboundary is nontrivial. One says that dt is an
m-th order deformation if the relations hold for n ≤ m, and that the m-th order deformation
extends to an (m+1)-th order deformation if there is some δm+1 satisfying the relation above
for n = m + 1. A formal deformation is an m-th order deformation for all m. From these
remarks, we see that there is a relationship between cohomology and formal deformations,
but it is less straightforward than in the infinitesimal case.

One can also consider deformations, both infinitesimal and formal, in which more than
one parameter t appears. Suppose that H 2 = 〈δ1, . . . , δn〉. Here, we identify H 2 with a sub-
space of C2(W), and the cochains δi are called representative cocycles for a basis of the
cohomology. Consider the infinitesimal deformation d inf, given by

d inf = d + tiδ
i .

This particular infinitesimal deformation is called the universal infinitesimal deformation.
It has the nice property that it uniquely generates all infinitesimal deformations in the fol-
lowing sense. If dt is any infinitesimal deformation given by the parameter t , then dt is
equivalent to a deformation of the form d + tδ where δ = aiδ

i . Then there is an obvious map
from k[t1, . . . , tn] → k[t], such that ti 
→ ait . With this assignment, the universal infinitesi-
mal deformation determines dt uniquely.

One can apply a similar construction for formal deformations to arrive at what is called a
miniversal deformation of d . Let {δi} be a (pre)basis of H 2 as in the infinitesimal case, and
{γ i} be a prebasis of the 3-coboundaries. Then there is a deformation of the form

d∞ = d + tiδ
i + siγ

i,
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where si is a formal power series in the variables ti , with all terms in si of order at least 2,
such that

[d∞, d∞] = riα
i,

where {αi} is a basis of H 3 and ri are formal power series in the ti starting with terms
of degree at least 2. The series ri are called the relations on the base of the miniversal
deformation. If these series converge in some neighborhood of 0 ∈ Cn and (t1, . . . , tn) ∈ Cn

satisfies all the relations ri , then the deformation dt is a well defined codifferential.
In the examples we present, it turns out that the relations on the base are actually given by

rational functions of the parameters, which are defined at ti = 0, so that there is such a radius
of convergence. Thus, we are able to obtain a notion of neighborhood of a codifferential d ,
consisting of those deformations arising from substituting small values of the parameters
into the miniversal deformation.

This notion of neighborhood does not give rise to a Hausdorff topology on the space of
equivalence classes of codifferentials on W , which is called the moduli space of Lie alge-
bras on W . It is possible for there to be a formal deformation dt , which is well defined as a
codifferential for small values of t , for which d0 = d , but for which dt ∼ d ′ for all values of t

except t = 0, where d ′ is not equivalent to d . This kind of a deformation family is called a
jump deformation. If a codifferential has a jump deformation to another codifferential, then
it is not a closed point in the moduli space. The existence of such points is why the moduli
space is not Hausdorff. This suggests that if we could somehow exclude the jump deforma-
tions, we could introduce a more reasonable topological decomposition of the moduli space
of Lie algebras.

A deformation family dt , where dt runs along a family of nonequivalent codifferentials,
is called a smooth deformation family. In this article, we shall describe a stratification of the
orbifold by smooth orbifolds, where the smooth neighborhoods of a codifferential are given
by smooth deformations. Jump deformations provide a type of gluing operation between
the strata. All of the non-Hausdorff behavior of the moduli space is thus represented by the
jump deformations.

If dt is a jump deformation from d to d ′, so that d0 = d and dt ∼ d ′ for t �= 0, and d ′
t

is a jump deformation from d ′ to d ′′, there is no way to compose these jump deformations
directly to obtain a jump deformation d ′′

t from d to d ′′. Nevertheless, there is always such
a jump deformation. Thus jump deformations are transitive. Similarly, if dt is a jump de-
formation from d to d ′, and d ′

t is a smooth family of deformations of d ′, then there is a
smooth family d ′′

t of deformations of d , and a smooth function f (t) with f (0) = 0, such
that d ′

f (t) = d ′′
t . In this case, we say that the deformation d ′′

t factors through the jump defor-
mation from d to d ′.

The stratification of the moduli space is obtained by considering as neighborhoods of a
codifferential d those codifferentials which can be obtained as smooth deformations of d

which do not factor through jump deformations. The smooth deformations which factor
through a jump deformation always belong to a different stratum. Jump deformations are
always a one way phenomenon. If d jumps to d ′, then it never happens that d ′ will jump
to d . In fact, if d∞(t) is the miniversal deformation of d , parameterized by t = (t1, . . . , tn)

then for a small enough neighborhood of 0 in the t space, d∞(t) is not equivalent to d unless
t = 0. Thus a smooth deformation dt of d , given by a curve arising from the miniversal
deformation, cannot have dt ∼ d , for small nonzero values of t . This explains why jump
deformations are one way.

There is an obvious way in which projective geometry enters the description of the mod-
uli space of Lie algebras on W , because ad ∼ d , for any nonzero a. However, in our study
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of 3 and 4 dimensional complex Lie algebras [9, 10], we discovered that the orbifolds which
form the strata of the moduli space have a natural structure of a projective orbifold. The
projective structure which arises is not simply the consequence of the identification of cod-
ifferentials with their multiples; it is a more subtle relationship.

The goal of this paper is to illustrate the phenomena we have described with some exam-
ples, and to describe the moduli space of 3 and 4 dimensional Lie algebras. These moduli
spaces were studied in detail in [9, 10, 15]. When constructing moduli spaces of Lie and L∞
algebras, we had noticed that jump deformations were always transitive. In January 2006,
at the Workshop in Oberwolfach on Deformations and Contractions in Mathematics and
Physics, we learned that the physics notion of contraction is equivalent to the mathemati-
cal notion of jump deformation. That is to say, a contraction and a jump deformation are
inverse notions. If a codifferential d has a jump deformation to d ′, then d ′ contracts to the
codifferential d . Using this equivalence, and a result of E. Weimar-Woods [18], we will give
a simple proof of the transitivity of jump deformations. However, the transitivity of jump
deformations is equivalent to the transitivity of contractions, which was pointed out in [18].

A common approach to constructing formal deformations is to use Massey products, and
one can solve the problem of whether a particular infinitesimal deformation extends to a for-
mal deformation using this approach. The advantage of studying the miniversal deformation
is that it gives all of the formal deformations at once, and makes it possible to analyze the
structure of the moduli space locally. The construction of the miniversal deformation which
we use here first appeared in [5], and was extended to infinity algebras in [8].

3 Moduli Spaces of Complex Lie Algebras

Let us consider the moduli space of complex three dimensional Lie algebras. This space is
quite simple in structure, consisting of a one-parameter family of solvable Lie algebras, and
three special Lie algebras.

To describe this moduli space, let us introduce some notation. If W = 〈w1, . . . ,wn〉 is an
n-dimensional odd vector space, 1 ≤ i ≤ n and I = (i1, . . . , ik), where 1 ≤ i1 < · · · < ik ≤ n,
then ϕI

i denotes the element of Ck(W) given by

ϕI
i (wJ ) = δI

J wi,

where wJ = wj1 · · ·wjk . When k is odd, ϕI
i is even. Similarly, when k is even ϕI

i is odd,
and to emphasize the difference between even and odd elements, we shall denote it by ψI

i

instead. Elements in C2(W) are all odd, because we assume that W is odd. This picture
corresponds to ordinary Lie algebras, because then the vector space V is even.

If W = 〈w1,w2,w3〉 is a 3-dimensional completely odd vector space, then S2(W) =
〈w1w2,w1w3,w2w3〉, and C2(W) is thus 9-dimensional. In terms of this basis, an element
ϕ ∈ C2(W), given by

ϕ = a11ψ
12
1 + a12ψ

13
1 + a13ψ

23
1

+ a21ψ
12
2 + a22ψ

13
2 + a23ψ

23
2

+ a31ψ
12
3 + a32ψ

13
3 + a33ψ

23
3

is given by the 3 × 3 matrix A = (aij ).
The classification of three-dimensional algebras is classical, for example, it appears

in [12, 14]. In order to give the correct stratification of the moduli space, it is necessary
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to realign the classical decomposition slightly. In [10], we gave the special points the names
d1, d2 and d3, and the elements of the family were denoted by d2(λ : μ), where (λ : μ) are
projective coordinates. Let us identify these elements with the classical notation. There is
only one nontrivial nilpotent Lie algebra (up to isomorphism), which is n3(C). This algebra
coincides with our d1. There is a family r3,α(C) of solvable Lie algebras, which coincides
with d2(λ : μ) for α = μ/λ, except when α = 1. The Lie algebra r3,1(C) coincides with our
special point d2, while the solvable Lie algebra r3(C) corresponds to our point d2(1 : 1). The
Lie algebra r3,0(C) is also denoted as r2(C)⊕C, where r2(C) is the nontrivial 2-dimensional
Lie algebra. Finally, the simple Lie algebra sl2(C) coincides with our d3.

The real difference between our classification and the usual one is that we interchange
the elements r3 and the elements r3,1. This interchange arises from the necessity of aligning
the elements in the moduli space into strata that are distinguished by jump deformations.
The element d2(1 : 1) belongs in the strata with the family d2(λ : μ), rather than the ele-
ment d2, because there is a jump deformation from d2 to d2(1 : 1), instead of the other way
around. Both of them have smooth deformations along the family d2(λ : μ), but the smooth
deformations of d2 along this family factor through the jump deformation to d2(1 : 1).

Actually, the first hint that the family might be misaligned can be seen in the behaviour
of the cohomology of the Lie algebras. The dimension of H 2(r3,1) is 3, while the dimension
of H 2(r3,α) is generically equal to 1. The dimension of H 2(r3) is 1, which is appropriate for
an element in the family.

Another anomaly in the cohomology occurs for r3,−1, when the dimension of H 2 jumps
to 2. In the classical picture, one considers only the elements r3,α where |α| ≤ 1. More
precisely, we find that r3,α ∼ r3,1/α . In our notation, d2(λ : μ) ∼ d2(μ : λ). Since (λ : μ) pa-
rameterizes the Riemann sphere P

1(C), we obtain an action of the symmetric group �2 on
this Riemann sphere, with the equivalence classes of the codifferentials d2(λ : μ) parame-
terized by the orbifold P

1(C)/�2. Note that we have obtained the stratum as a projective
orbifold.

There are precisely two orbifold points in P
1(C)/�2, the points (1 : 1) and (1 : −1).

(Recall that the orbifold points are the points whose stabilizer is nontrivial.) It is thus not
surprising that something special should occur at the orbifold points. The codifferential
d2(1 : 1) is special, because there is a jump deformation from the codifferential d2 to it,
while the codifferential d2(1 : −1) is special for the reason that it has a jump deformation to
the codifferential d3. In fact, this jump deformation is well known to physicists, because it
corresponds to a contraction of the simple Lie algebra sl2(C).

The nilpotent Lie algebra d1 has jump deformations to every codifferential in the family
d2(λ : μ), as well as to the simple Lie algebra d3. In fact, the jump deformation from d1 to d3

is an example of a transitive jump, because it factors through the jump deformation from d1

to d2(1 : −1). It is not surprising that the nilpotent Lie algebra should deform to the solvable
Lie algebras. Nilpotent Lie algebras are the least rigid in terms of their deformations, while
simple Lie algebras are completely rigid.

Consider the solvable Lie algebra d2, which is represented by the codifferential d2 =
ψ13

1 + ψ23
2 . Explicitly, in terms of the basis {w1,w2,w3}, the Lie algebra structure, in stan-

dard bracket notation, is given by

[w1,w3] = w1, [w2,w3] = w2,

with all other brackets vanishing. In [9] the miniversal deformation of d2 was calculated. Its
formula, as given in [15], is

d∞
2 = ψ13

1 (1 + t1) + ψ23
2 + ψ13

2 t2 + ψ23
1 t3.
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In terms of standard bracket notation, the deformed algebra is given by the bracket rules

[w1,w3] = (1 + t1)w1 + t2w2, [w2,w3] = t3w1 + w2.

It is convenient to express the miniversal deformation of d2 by the matrix A =
[

0 1+t1 t3
0 t2 1
0 0 0

]

.

The 3 parameters in the versal deformation arise from the fact that H 2(d2) is 3-
dimensional, which means that the tangent space of the versal deformation is 3-dimensional.
This is an interesting situation, because the moduli space of 3-dimensional Lie algebras con-
sists of a 1-dimensional piece, and three 0-dimensional pieces, so it is a bit disconcerting
to find that the dimension of the tangent space is larger than the dimension of the moduli
space.

A partial explanation for this phenomenon is as follows. When classifying infinitesimal
deformations, one considers the action of the group of infinitesimal automorphisms of W ,
that is, the maps g = 1W + tλ, where λ ∈ Hom(W,W). Under the action of this group, the
infinitesimal deformations of the form dt = d + tδ, are classified by the cohomology H 2(d).
However, the automorphism group Aut(d), consisting of the automorphisms g of W such
that g∗(d) = d acts on H 2(d), and thus on the set of infinitesimal deformations, and it is
isomorphism classes under this action which really classify the nonequivalent deformations
of d . Thus the tangent space should really be considered as an orbifold, in terms of the action
of this group.

If one considers which of the codifferentials d∞
2 is equivalent to, one finds that

d∞
2 ∼ d2(α : β),

where

α,β = 1 + 1/2 t1 ± 1/2
√

t12 + 4 t3t2.

Thus, the deformation is equivalent to d2(1 : 1) precisely when t2
1 + 4t2t3 = 0, and not all

the parameters vanish. For example, the 1-parameter family of deformations

dt = d∞
2 (0, t,0) = ψ13

1 + ψ23
2 + ψ13

2 t

is equivalent to d2(1 : 1) whenever t �= 0. This is an example of a jump deformation. If gt is
the automorphism of W given by the matrix

⎡

⎣
0 1 1
t 0 1
0 0 1

⎤

⎦ ,

then g∗
t (dt ) = d2(1 : 1). To compute this, we first compute the matrix Qt representing gt :

S2(W) → S2(W). We have

gt (w1w2) = tw2w1 = −tw1w2

gt (w1w3) = tw2(w1 + w2 + w3) = −tw1w2 + tw2w3

gt (w2w3) = w1(w1 + w2 + w3) = w1w2 + w1w3,

so that

Qt =
⎡

⎣
−t −t 1
0 0 1
0 t 0

⎤

⎦ .
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If At represents the matrix for dt and A′ the matrix for d2(1 : 1), then

At =
⎡

⎣
0 1 0
0 t 1
0 0 0

⎤

⎦ , A′ =
⎡

⎣
0 1 1
0 0 1
0 0 0

⎤

⎦ .

In matrix form the condition g∗
t (dt ) = d2(1 : 1) is simply G−1

t AtQt = A′, which is easily
verified.

Turning this process around, we obtain (g−1)∗(d(1 : 1)) = dt . This formula represents the
fact that d(1 : 1) contracts to the Lie algebra d2. Let us recall the definition of a contraction.

Definition 3.1 Let gt be a family of automorphisms of V , defined in a punctured neighbor-
hood of zero. If limt→0(g

∗
t (d

′)) ∼ d exists and d is not equivalent to d ′, then the Lie algebra
given by d is said to be a contraction of the Lie algebra given by d ′.

Since limt→0(dt ) = d2, we see that d2 is a contraction of the Lie algebra d(1 : 1). Note that
the jump deformation dt from d2 to d(1 : 1) is by no means unique. In fact, if one considers
any curve γ (t) on the surface t2

1 + 4t2t3 = 0 satisfying γ (0) = 0, then the deformation
dt = d∞

2 (γ (t)) represents a jump deformation from d2 to d(1 : 1), so there is a corresponding
contraction of d(1 : 1) to d2.

To determine all possible contractions of a codifferential d ′ by finding all automorphisms
gt such that limt→0(g

∗
t (d

′)) = d exists can be a daunting task. However, what is interesting is
not the method of obtaining the contraction, but simply the contracted object. The following
theorem [18], due to E. Weimar-Woods, makes the task of computing the contractions much
simpler in practice.

Theorem 3.2 (Weimar-Woods, 2000) If there is a contraction from d ′ to d , where d and d ′
are Lie algebra structures on a finite dimensional space W , then there is a basis of W and
an automorphism gt of W , which has matrix diag(tλ1 , . . . , tλn ), where the λi are integers,
such that g∗(d ′) ∼ d .

This theorem makes it possible to determine all Lie algebras d which arise as contractions
of d ′, even if the classification of Lie algebra structures on W is not known. Let us illus-

trate this idea by considering the contractions of d ′ = d(1 : 1). The matrix of d ′ is

[
0 1 1
0 0 1
0 0 0

]

.

Suppose that the matrix G of gt is given by G = diag(ta, tb, tc). Then the matrix Q of
g : S2(W) → S2(W) is Q = diag(ta+b, ta+c, tb+c). Thus the matrix of A′ = G−1AQ is[

0 tc tb+c−a

0 0 tc

0 0 0

]

. In order that limt→0 g∗(d ′) exists, we must have c ≥ 0 and b + c − a ≥ 0.

Clearly, if both of the inequalities are strict, this describes the uninteresting contraction
to the zero codifferential. Also, if both inequalities are equalities, this does not describe a
contraction, since the original codifferential is not changed. Thus we have two nontrivial

contractions, to the codifferential d1, given by the matrix

[
0 0 1
0 0 0
0 0 0

]

and to the codifferential

d2, given by the matrix

[
0 1 0
0 0 1
0 0 0

]

.

As is illustrated by the example, given a finite dimensional Lie algebra, there are only
a finite number of Lie algebras which can arise as contractions of the Lie algebra. The
converse statement about jump deformations is not true. In fact, the Lie algebra d1 has
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jump deformations to every 3-dimensional Lie algebra except for d2. It is also said that
the multiplication in a contracted Lie algebra is “more Abelian”. More precisely, one can
say that the cohomology of a contracted Lie algebra is higher dimensional, and that the
contracted Lie algebra has “more deformations” than the original Lie algebra. To show this,
we will analyze the miniversal deformation of a Lie algebra more carefully.

Suppose that {δ1, . . . , δm} is a pre-basis of H 2(d), in other words, we assume that δi

are 2-cocycles whose images in H 2(d) are a basis, and that {γ 1, . . . , γ n} is a pre-basis
of the 3-coboundaries, so that the D(γ i) give a basis for B3(W) = D(C2(W)). Then the
miniversal deformation can be given in the form

d∞ = d + tiδ
i + xjγ

j ,

where xj are formal power series in the parameters ti , whose lowest order terms are of
degree 2; i.e.,

xi = a
jk

i tj tk + a
jkl

i tj tktl + · · · .
If {αi} is a pre-basis of H 3(W) and {τ i} is a prebasis of the B4(W), then

[d∞, d∞] = riα
i + uiτ

i,

where the relations ri are formal power series in the parameters ti , whose lowest order terms
are of degree 2, and the ui are formal power series in the ti which are contained in the ideal
in [̨[t1, . . . , tm]] generated by the relations. The ring A = [̨[t1, . . . , tm]]/(ri) is called the base
of the miniversal deformation. The existence of a miniversal deformation of this form for
Lie algebras was proved in [5], and for infinity algebras in [8].

A formal 1-parameter deformation dt of d is given by any homomorphism f : A →
k[[t]], such that f (ti) is a formal power series in t with nonzero constant term, and is defined
by

dt = d + ai(t)δ
i + bi(t)γ

i,

where ai(t) = f (ti) and bi(t) = f (xi) are formal power series in t . If the power series f (ti)

and f (xi) converge in a neighborhood of zero, then the deformation is said to be analytic.
In principle, the computation of the miniversal deformation might be expected to be a fairly
intractable problem.

One can proceed to compute the miniversal deformation order by order, and hope that the
process terminates after a finite number of steps. In many of the examples which the authors
have studied, this procedure does work. However, another idea is to write the formula for
the versal deformation d∞ as above, with unknown coefficients xi . Then one computes that

[d∞, d∞] = riα
i + siβ

i + uiτ
i,

where the βi are a basis of the 3-coboundaries. The deformation will be miniversal if si = 0
for all i. If we have chosen βi = D(γi), then we see that

sk = 2xk + a
ij

k ti tj + b
ij

k tixj + c
ij

k xixj .

The number of equations is exactly equal to the number of variables xi . From the form of
the equations, there is a solution near x = t = 0. However, these equations are quadratic in
the xi , so it is not clear that it is possible to solve them in any systematic manner. Surpris-
ingly, for any three or four dimensional example, it turns out that there is not only a solution,
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but the solution expresses the xi as rational functions of the ti . It is not known to us whether
this property is true in general, but it is true for every example which we have constructed.

After solving for the xi , one substitutes their values into the expressions above for the ri ,
to obtain the relations as functions of the parameters ti . The fact that the ui are equal to zero
mod the ri follows from the construction in [5].

Now let us suppose that d ′
t is an analytic deformation of d ′. Then d ′

t = d ′ + tϕ(t). Suppose
that d = limt→0 g∗(d ′) is a contraction of d ′. Then dt = g∗

t (d
′) is a jump deformation of d .

We do not know that limt→0 g∗
t (d

′
t ) exists. However, let us suppose that g is expressed as

a diagonal matrix in integer powers of t . Then, if k is a large enough odd positive integer
exponent, g∗(tkϕ(tk)) will be given by positive powers of t only, and therefore, its limit as
t → 0 will be zero. Thus, the deformation d̃t = g∗

t (d
′
tk
) is a well defined deformation of d .

Note that if d ′
t is a jump deformation from d ′ to d ′′, then d̃t is a jump deformation of d

to d ′′, which shows the transitivity of jump deformations. Actually, the transitivity of con-
tractions is known as well [18], and is even more obvious. When d ′

t is a smooth deformation,
that is, when the codifferentials dt are not isomorphic as t varies, then d̃t is also a smooth
deformation, and d ′

tk
∼ d̃t . We say that d̃t factors through the jump deformation d ′

t . We
summarize this analysis in the theorem below.

Theorem 3.3 Suppose that d ′
t is a deformation of d ′ and that there is a jump deformation of

d to d ′. Then, for a sufficiently large positive integer k, there is a deformation dt of d such
that dt ∼ d ′

tk
.

As an example, let us consider the case d ′ = d2(1 : 1) with deformation d ′
t represented by

the matrix A =
[

0 1 1
0 t 1
0 0 0

]

. Let G = diag(ta, tb,1) represent gt , where b − a > 0. Since g∗
t (d

′)

is given by the matrix

[
0 1 tb−a

0 0 1
0 0 0

]

, gt determines a contraction of d ′ to d = d2. The matrix

of g∗
t (d

′
tk
) is

[
0 1 tb−a

0 tk−(b−a) 1
0 0 0

]

. It follows that for k ≥ b − a, the deformation dt = g∗
t (d

′
tk
) is

a well defined deformation of d2. Note that in this case, if we choose b − a = 1, then we
can set k = 1. However, it is not clear from our argument whether one can always find an
appropriate gt so that we can set k = 1. The key issue is that if d ′′ is a deformation of d ′,
then it is also a deformation of d . This motivates the following definition.

Definition 3.4 Suppose that dt ∼ d ′
t in some punctured neighborhood of t = 0, d0 = d ,

d ′
0 = d ′ and there is a jump deformation from d to d ′. Then we say that the deformation dt

factors through the jump deformation.

For the sake of completeness, we will now give a complete description of the miniversal
deformations of the three dimensional Lie algebras, and compute their contractions. If A =
(aij ) is an arbitrary matrix of a codifferential, and G = diag(ta, tb, tc) is a diagonal matrix
of an automorphism gt of C

3, then A′ = G−1AQ, where Q is the matrix of gt : S2(W) →
S2(W), has the form

A′ =
⎡

⎣
tba11 t ca12 tb+c−aa13

taa21 ta+c−ba22 t ca23

ta+b−ca31 taa32 tba33

⎤

⎦ .
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In order to obtain a nontrivial contraction, all of the powers of t corresponding to nonzero
entries in A must be nonnegative, at least one, but not all, of the powers must be zero. To
obtain the matrix of the contracted codifferential, one simply lets t = 0 in A′.

Of course, even though two resulting matrices may be different, the codifferentials may
still be equivalent, so it is necessary to check this. However, note that it is not necessary
to know the complete classification of the Lie algebras in order to check whether different
matrices give rise to equivalent contractions. This is one of the strengths of the contraction
method, because it can be applied to determine all nonequivalent contractions of a codiffer-
ential, without a knowledge of the complete classification of the moduli space.

3.1 The Simple Lie Algebra sl2(C)

The simple Lie algebra sl2(C) is represented by the codifferential d3 = ψ12
3 + ψ13

2 + ψ23
1 ,

with matrix

[
0 0 1
0 1 0
1 0 0

]

. As the cohomology of this codifferential vanishes completely, the versal

deformation is simply d∞
3 = d3 which is not interesting. On the other hand, one computes

immediately that the matrices

[
0 0 0
0 1 0
1 0 0

]

,

[
0 0 1
0 0 0
1 0 0

]

, and

[
0 0 1
0 1 0
0 0 0

]

, all arise from contractions. These

matrices arise from codifferentials which are equivalent to d2(1 : −1).

3.2 The Solvable Lie Algebra r3,1(C)

This is given by the codifferential d2 = ψ13
1 + ψ23

2 . We have already discussed the versal
deformation of this codifferential. Note that from the form (3) of a diagonal contraction, it
follows that there are no nontrivial contractions of d2.

3.3 The Solvable Lie Algebra r3,−1(C)

This is given by the codifferential d(1 : −1) = ψ13
1 +ψ23

1 −ψ23
2 . This codifferential is unique

in the family d(λ : μ) in that its cohomology H 2 is two dimensional, which means that its
versal deformation is given by a two parameter family

d∞(1 : −1) = ψ13
1 (1 + t1) + ψ23

1 − ψ23
2 + ψ12

3 t2,

whose matrix is

[
0 1+t1 1
0 0 −1
t2 0 0

]

. There is one relation on the base: t1t2 = 0. This means that

either t1 = 0 or t2 = 0. In the former case, the versal deformation is equivalent to the simple
Lie algebra d3, whenever t2 �= 0, so this gives a jump deformation. When t2 = 0, the versal
deformation is equivalent to the codifferential d2(1+ t1 : −1), which means that as t changes,
the deformation moves along the family d2(λ : μ).

For contractions, we note that one can obtain the matrices

[
0 0 1
0 0 0
0 0 0

]

, corresponding to the

codifferential d1, and

[
0 1 0
0 0 −1
0 0 0

]

, which is equivalent to the codifferential d2(1 : −1) again.

Thus, only the first matrix yields a contraction.

3.4 The Solvable Lie Algebras r3,r (C), r3(C), and r2(C) ⊕ C

Recall that the codifferential d2(λ : μ) represents the Lie algebra r3,μ/λ when λ �= 0 and
λ �= μ. When λ = 0, this represents the Lie algebra r2(C) ⊕ C, and when λ = μ, this rep-
resents the codifferential r3(C). Except for the case when λ = μ, the versal deformation is
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given by d∞(λ : μ) = ψ13
1 (λ + t1) + ψ23

1 + ψ23
2 μ, with matrix

[
0 λ+t1 1
0 0 μ

0 0 0

]

. It is very clear

from the form of the matrix that the versal deformation is isomorphic to d2(λ + t1 : μ), so
the deformations move along the same family. This is what determines the neighborhood
structure of elements in the family. Note that since there are no jump deformations, these
smooth deformations do not factor through a jump deformation, so it is natural to identify
the neighborhoods of d2(λ : μ) as being given by the family.

When λ = μ, it turns out that the cocycle ψ13
1 is a coboundary, so cannot be used as in the

generic case to parameterize the versal deformation. It is strange that the deformation dt =
d(1 : 1) + ψ13

1 t varies smoothly along the family, although its leading term is a coboundary.
It is easy to see that the only nontrivial contractions of d2(λ : μ), when λ �= μ are to d1,

representing the Lie algebra n3. However, when λ = μ, the matrix

[
0 1 0
0 0 1
0 0 0

]

arises by the

contraction process, and this matrix corresponds to the codifferential d2, which therefore is
a contraction of d2(1 : 1).

3.5 The Nilpotent Lie Algebra n3(C)

The nilpotent Lie algebra n3(C) is represented by the codifferential d1 = ψ23
1 . As the dimen-

sional of H 2(d1) is 5, it is not surprising that d1 has a lot of deformations; in fact, it deforms
to every 3-dimensional Lie algebra except d2. The versal deformation is given by the ma-

trix

[
0 0 1

−t2 t5 t3
t4 t2 t1

]

, and there are two relations on the base: t1t5 − t2t3 = 0 and t1t2 + t3t4 = 0.

We will not give explicitly formulas for all the jump deformations. To determine them, one
first solves the relations explicitly. Then, for a solution of the relations, one determines what
codifferential is represented by the corresponding matrix. All of this is easy to do using a
computer algebra system. Note that some of the deformations are not jump deformations,
but run along the family d2(λ : μ). These are examples of smooth deformations which factor
through a jump deformation. There are no nontrivial contractions of d1.

4 Real 3-Dimensional Lie Algebras

In the classification of complex 3-dimensional Lie algebras, one can proceed as follows.
Either the algebra is simple, in which case it is isomorphic to sl2(C), which is represented
by the codifferential d3, or it is solvable, so it is an extension of the 1-dimensional Lie
algebra by a 2-dimensional one.

It turns out that one only needs to consider the case of an extension of a 1-dimensional Lie
algebra by the Abelian 2-dimensional Lie algebra, because the extensions by the nontrivial
2-dimensional Lie algebra do not give any additional nonequivalent codifferentials. The
matrix of the extension can be given in the form A = [

0 A′
0 0

]
, where A′ is an arbitrary 2 × 2

matrix. Two such extensions are equivalent precisely when the matrices are similar, up to
multiplication by a constant. As a consequence, we can reduce everything to the Jordan
decomposition of the matrix.

In fact, the codifferential d2(λ : μ) is given by the matrix A′ = [ λ 1
0 μ

]
, d2 is given by the

identity matrix, and d1 is given by the matrix A′ = [ 0 1
0 0

]
. The interpretation of d2(λ : μ) as a

P
1(C)/�2 is a consequence of the fact that equivalence is given by similarity.

The same pattern can be observed in higher dimensions. For an n + 2-dimensional Lie
algebra, there is a stratum that is given as the orbifold P

n/�n+1, where the action of �n+1 is
given by permuting the projective coordinates in P

n.
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For real Lie algebras, one has to make the following modifications of the theory. First,
there are two nonisomorphic simple Lie algebras sl2(R), represented by the codifferential
d3 = ψ12

3 + ψ13
2 + ψ23

1 and su2, represented by the codifferential d ′
3 = ψ12

3 − ψ13
2 + ψ23

1 .
Secondly, while it is true that any extension of R by a 2-dimensional real Lie algebra is

equivalent to one given by an extension by an Abelian Lie algebra, so that it is determined by
the similarity class of a 2×2 matrix A′, the rational canonical form determines the similarity
classes of real matrices. Codifferentials of the form d2(λ : μ), determined by the matrices[ λ 1

0 μ

]
are still nonequivalent over C. These codifferentials are parameterized by P

1(R)/�2.
However, there are problems which arise in using this family as part of the description of
the moduli space.

It turns out to be more effective to work with the matrices from the rational canonical
form, which can be expressed in the form Ax,y = [ 0 1

x y

]
. It is easy to check that the codiffer-

entials corresponding to Ax,y and At2x,ty are equivalent, for any t . To get a single family of
codifferentials, parameterized by the action of �2 on P

1, it is convenient to give the family
d(λ : μ) as follows:

d(λ : μ) =
{

ψ13
2 λ + ψ23

1 λ + 2ψ23
2 μ if λ ≥ 0,

−ψ13
2 λ + ψ23

1 λ + 2ψ23
2 μ if λ < 0.

It is easy to check that d(λ : μ) ∼ d(tλ : tμ) for t > 0. Note that our space is not really
projective, corresponding to the quotient of R

2 − {0} by R+, rather than R∗. Furthermore
d(λ : μ) ∼ d(λ : −μ), so we obtain an action of �2 on the parameter space, determining
the codifferentials up to equivalence. There are two orbifold points in this action, (1 : 0) and
(−1 : 0).

A justification for the seemingly artificial gluing together of two types of codifferential
at the point d(0 : 1) is given by studying the versal deformation of the Lie algebra, which is

d∞(0 : 1) = ψ13
1 t + ψ23

2 .

The versal deformation is equivalent to the codifferential d(λ : μ) where μ = 1 + t , and
λ = √−t if t < 0, and λ = −√

t if t > 0. Thus the two pieces of d(λ : μ) are glued together
at d(0 : 1) by means of the versal deformation.

The points d(1 : 0) and d(−1 : 0) both correspond to the same point d2(1 : −1) in the
complex case, so it not surprising that each of them has a jump deformation to a simple Lie
algebra. In fact, the contractions of the 3-dimensional simple Lie algebras were computed
in [1] and a complete list of the contractions is given in [14].

Let us consider the real algebra sl2(R), which is given by the same codifferential d3 =
ψ12

3 + ψ13
2 + ψ23

1 as the complex algebra sl2(C), with matrix

[
0 0 1
0 1 0
1 0 0

]

. We have already

computed the contractions of d3 previously, but now we need to identify the real algebras
associated to them. The complex algebras are all isomorphic to d2(1 : −1), but there are two
real versions of this algebra, d(1 : 0) and d(0 : 1). The matrix A contracts to the matrices[

0 0 1
0 1 0
0 0 0

]

,

[
0 0 1
0 0 0
1 0 0

]

and

[
0 0 0
0 1 0
1 0 0

]

. The first matrix is just the matrix of d(1 : 0). The second matrix

gives a codifferential equivalent to d(−1 : 0), while the third is equivalent to d(1 : 0) again.
Thus, there are two distinct contractions of sl2(R).

The real algebra su2 is given by the codifferential d ′
3 = ψ12

3 − ψ13
2 + ψ23

1 , with matrix
[

0 0 1
0 −1 0
1 0 0

]

. Its contractions are given by the matrices

[
0 0 1
0 −1 0
0 0 0

]

,

[
0 0 1
0 0 0
1 0 0

]

and

[
0 0 0
0 −1 0
1 0 0

]

. Clearly,
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the first one is just the matrix of d(−1 : 0). The other two are also equivalent to d(−1 : 0).
As a consequence, there is just one contraction of su2.

Note that d(−1 : 1) ∼ d2(1 : 1). The matrix of d(−1 : 1) is

[
0 0 1
0 −1 2
0 0 0

]

. Since a contrac-

tion by a diagonal matrix has the effect of setting some of the coefficients in the matrix to
zero, it is impossible to obtain a matrix which is equivalent to d2 by using a diagonal matrix
to perform the contraction, with respect to this basis. In fact, if we consider the automor-

phism gt , given by the matrix Gt =
[

1/t 0 0
1/t 1 0
0 0 1

]

, then g∗
t (d(−1 : 1)) is given by the matrix

[
0 1 t

0 0 1
0 0 0

]

. Therefore, limt→0 g∗
t (d(1 : 1)) ∼ d2. This example illustrates an important limita-

tion of the contraction method in [18], that one has to be clever about finding a basis in which
the matrix of the automorphism producing the contraction is diagonal. As far as we can see,
this limitation is a serious one, because the advantage of computation of contractions by use
of diagonal matrices is in the ease of computation, but if the procedure misses some of the
contractions, it is inadequate to solving the problem posed in [17], that of finding a simple
class of contractions which produce all possible contractions.

5 Complex 4-Dimensional Algebras

In [10], the moduli space of 4-dimensional complex Lie algebras was studied in detail,
and a decomposition into strata consisting of orbifolds, connected by jump deformations
was given. Miniversal deformations for the Lie algebras were computed, so all contrac-
tions of these Lie algebras can be read off from the jump deformations. We will use the
basis {w1w2,w1w3,w2w3,w1w4,w2w4,w3w4} for S2(W), where W = 〈w1,w2,w3,w4〉 is
a completely odd space of dimension 4. The moduli space of Lie algebras can be decom-
posed into one 2-dimensional orbifold, two 1-dimensional orbifolds, and 6 special points.
The decomposition is as follows:

(1) d3(λ : μ : ν): with matrix
⎡

⎢
⎣

0 0 0 λ 1 0
0 0 0 0 μ 1
0 0 0 0 0 ν

0 0 0 0 0 0

⎤

⎥
⎦

is a 2-dimensional family of codifferentials, where (λ : μ : ν) are projective coordinates,
and the action of the group �3, by permuting the coordinates gives equivalent codiffer-
entials. Thus this family is parameterized by the orbifold P

1(C)/�3.
(2) d1(λ : μ): given by

⎡

⎢
⎣

0 0 1 μ + λ 0 0
0 0 0 0 λ 1
0 0 0 0 0 μ

0 0 0 0 0 0

⎤

⎥
⎦

is a 1-dimensional family of codifferentials, given by projective coordinates (λ : μ), with
an action of �/2, given by permutation of coordinates. Thus this family is parameterized
by P

1(C)/�2.
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(3) d3(λ : μ): given by the matrix

⎡

⎢
⎣

0 0 0 λ 0 0
0 0 0 0 λ 1
0 0 0 0 0 μ

0 0 0 0 0 0

⎤

⎥
⎦

is the other 1-dimensional family, given by projective coordinates (λ : μ). This family
does not have an action of �2, so it is parameterized simply by P

1(C).
(4) d1: given by

⎡

⎢
⎣

0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎦

is the nilpotent Lie algebra n3(C) ⊕ C.
(5) d�

1: given by
⎡

⎢
⎣

0 0 1 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎥
⎦

is a solvable algebra.
(6) d�

2: given by
⎡

⎢
⎣

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎦

is the nilpotent Lie algebra n4(C).
(7) d�

2: given by
⎡

⎢
⎣

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎥
⎦

is the Lie algebra r2(C) ⊕ r2(C).
(8) d3: given by

⎡

⎢
⎣

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎦

is the Lie algebra sl2(C) ⊕ C.
(9) d∗

3 : given by
⎡

⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤

⎥
⎦

is another solvable Lie algebra.
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Complete details about the miniversal deformations of these algebras, and an explanation
for the decomposition is given in [10], and we do not reproduce this information here. Our
goal here is to study the contractions of the codifferentials.

6 Contractions of sl2(C) ⊕ Csl2(C) ⊕ Csl2(C) ⊕ C

The codifferential d3 is the same codifferential as in the 3-dimensional case, but in four
dimensions, it picks up additional contractions. Note that d3 is still rigid as a 4-dimensional
Lie algebra, although its cohomology does not vanish completely. The following series of
jump deformations give the complete contraction picture for d3

d1 � d∗
2 � d3(1 : −1 : 0) � d1(1 : −1) � d3.

Every 3-dimensional Lie algebra determines a 4-dimensional Lie algebra in a trivial way, so
we may consider the 3-dimensional Lie algebras as part of the 4-dimensional moduli space.

Note that the d1 in the 4-dimensional list is equivalent to the d1 in the 3-dimensional
case, and d3(λ : μ : 0) is equivalent to the Lie algebra given by d2(λ : μ), so two of the
jumps on this list are already known from the 3-dimensional picture, and they account for
all of the diagonal contractions of d3, in terms of the usual basis. To understand the other
contractions a bit better, let us analyze the contraction to d1(1 : −1). The matrix of the
miniversal deformation of d1(1 : −1) is

⎡

⎢
⎣

0 0 1 t2 0 0
t1 t1 − 1/2 t1t2 0 0 1 + t2 1
0 −t1 0 0 0 −1
0 0 0 t1t2 0 0

⎤

⎥
⎦ .

The relation on the base is t1t2 = 0. If we set t2 = 0 and t1 = t we obtain a deformation dt

given by
⎡

⎢
⎣

0 0 1 0 0 0
t t 0 0 1 1
0 −t 0 0 0 −1
0 0 0 0 0 0

⎤

⎥
⎦ .

If we let gt be given by

Gt =
⎡

⎢
⎣

t 0 0 −1
0

√
t 0 0

0
√

t
√

t 0
0 0 0 1

⎤

⎥
⎦ ,

then dt = g∗
t (d3), so d3 contracts to d1(1 : −1) using this transformation. The square roots

in the formula for Gt are not important, because we can replace
√

t with t in this matrix and
obtain a contraction using dt2 , which clearly has the same limit.

Now, d3 is equivalent to the codifferential obtained by substituting t = 1 in dt . It is clear
that we obtain d1(1 : −1) as a contraction using the basis in which d3 has this matrix, but it
is not obvious from the original expression of d3 that one should consider such a basis. We
determined this basis from the jump deformations of d1(1 : −1), but what we would have
hoped to be able to do is determine the contractions of d3 without this knowledge.
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6.1 Contractions of r2(C) ⊕ r2(C)

The following series of jump deformations gives the complete picture of the contractions of
the codifferential d

�

2 , representing the Lie algebra r2(C) ⊕ r2(C)

d1 � d�
2 � d3(1 : 0 : 1) � d1(1 : 0) � d

�

2 .

The algebra d
�

2 is the only completely rigid 4-dimensional Lie algebra, which means that
its cohomology vanishes in all dimensions. Rigid Lie algebras have a complex contraction
picture.

6.2 Contractions of d1(1 : 1)

Here the contractions do not come from a single line of jump deformations. We have

d1 � d�
2 � d3(1 : 1 : 2) � d1(1 : 1),

d1 � d
�

1 � d1(1 : 1).

The first line is a special case of the generic contraction picture for codifferentials of the
form d1(λ : μ), but the second line represents line of contractions which only apply to this
special point.

The codifferential d1(1 : 1) is analogous to the 3-dimensional codifferential d2(1 : 1), in
the way it behaves in its family. As a member of the family d1(λ : μ), it has no special
properties with respect to deformations, but there is a element outside the family which has
a jump deformation to it. It is the element d1(1 : −1) in the family d1(λ : μ) which has extra
deformations. Note that this behaviour parallels the situation with d2(λ : μ), because the
points d1(1 : 1) and d1(1 : −1) are the orbifold points in this family, and they are the ones
where unusual behaviour occurs.

6.3 Contractions of d1(λ : μ)

Codifferentials of the form d1(λ : μ) do not have many deformations, but they all arise as
jump deformations from the family d3(λ : μ : λ+μ). With the exception of the codifferential
d1(1 : −1), which has a jump deformation to d3, all other deformations of d1(λ : μ) simply
move along this family

d1 � d�
2 � d3(λ : μ : λ + μ) � d1(λ : μ).

Note that in the action of �3 on P
2, the subgroup �2 consisting of the permutations of the

first two coordinates preserves the P
1 given by (λ : μ : λ + μ). As a consequence, d3(λ : μ :

λ + μ) is parameterized by P
1/�2, the same parameterization of d1(λ : μ).

6.4 Contractions of d3(λ : λ : μ)

This special case of the codifferentials of type d3(λ : μ : ν) has a more complex contraction
picture than usual for this type. Deformations that run along the family d3(λ : μ : ν). We
have

d1 � d�
2 � d3(λ : μ) � d3(λ : λ : μ).
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These points (λ : λ : μ) are orbifold points on P
2, and the atypical contraction picture of

the points of the form d3(λ : λ : μ) resembles the behaviour of the orbifold point d2(1 : 1)

in the 3-dimensional case. One does not observe anything special about the deformations of
codifferentials of the type d3(λ : λ : μ).

6.5 Contractions of d3(λ : μ : ν)

Generically, there are not many contractions of d3(λ : μ : ν). We have

d1 � d�
2 � d3(λ : μ : ν).

Certain subfamilies of the family d3(λ : μ : ν) have extra jump deformations or extra con-
tractions, but generically, the deformations are only along the family.

6.6 Contractions of d3(1 : 1)

In general, d3(λ : μ) has no contractions. However, we obtain one special case

d�
3 � d3(1 : 1).

On the other hand d3(λ : μ) has jump deformations to the family d3(λ : μ : ν) along the
subfamily d3(λ : λ : μ). Note that the action of �3 on P

2 identifies three copies of P
1, given

by the action on (λ : λ : μ), which mutually intersect only in the point (1 : 1 : 1), so that
d3(λ : λ : μ) has no net nontrivial action of �3. As a consequence, it is not surprising that
the parameter space of d3(λ : μ) also has no group action, and is thus simply P

1.

7 A Complicated Versal Deformation

To illustrate some of the difficulties with the approach to computing contractions using
the miniversal deformations of the objects in the moduli space, we give an example of
a 4-dimensional codifferential whose versal deformation is quite complicated. For the cod-
ifferential d1 = ψ24

1 , the dimension of H 2 is 13, while the dimension of H 3 is 10. This
means that there will be 10 relations on the base of the versal deformation, which will be a
13-parameter algebra.

The matrix of the versal deformation is
⎡

⎢
⎢
⎣

0 t6 0 t4 1 0
−t11 + t4t2 −t9t12 + t3t1 + t3t2 − t9t6 t6 + t12 t10 0 t3

t8 t9t2 t1 t13 0 t9
t7 −t9t5 + t12t1 + t2t6 + t2t12 t5 t11 t2 t12

⎤

⎥
⎥
⎦ .

This complexity of this matrix is not the main source of the difficulty. What makes it much
more difficult to work with is that there are relations on the base of the versal deforma-
tion. The parameters need to satisfy 10 different relations, and finding the solutions to these
relations leads to a lot of complications.

When we solved these relations using Maple, we came up with 48 distinct solutions.
Each solution to the relations needs to be substituted in the matrix, and then one has to con-
sider which codifferential the solution is equivalent to. With a large number of parameters,
determining the equivalence class of such a matrix is not an easy task, even for the com-
puter. For the case of d1, we were able to determine all of the nonequivalent deformations,
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including the jump deformations, so we can determine from this information which codif-
ferentials contract to d1. However, as the reader can imagine, this example is about at the
limit of complexity which can be handled by current software.

The 10 relations on the base are:

0 = t13t1 − t13t2 − t8t4 + t9t8,

0 = −t2t11 + t2
2 t4 − t7t4 + t13t5 + t12t8,

0 = −t12t4 − 2 t9t6 + t3t1 + t3t2 − t9t12,

0 = −t1t6 − t5t4 + t12t1 + t2t6 + t2t12 − t9t5,

0 = −t1t11 + t1t4t2 − t13t5 − 2 t8t6 − t12t8 − t9t7,

0 = −t10t2 + t8t3 + t4t11 − t2
4 t2 + t13t6 + t13t12,

0 = −t10t1 − t8t3 − t9t2t4 + t13t6 + t11t9 − t13t12,

0 = t1t9t5 − t12t
2
1 − t1t2t6 + t2

2 t6 + t2
2 t12 − 2 t11t5,

+ t5t4t2 − 2 t7t6 − 2 t12t7,

0 = 2 t11t3 − 2 t3t4t2 + t4t9t12 − t4t3t1 + t4t9t6 − 2 t12t10,

+ t2
9 t12 − t9t3t1 + t2

9 t6,

0 = −t9t2t12 + t2t3t1 + t3t
2
2 − 2 t2t9t6 − t7t3 + t4t9t5 − t4t12t1,

− t4t2t6 − t4t2t12 − t10t5 + t11t6 + t2
9 t5 − t9t12t1.

Four of the relations above contain only quadratic terms, while the rest contain some cubic
terms as well. Because there are no higher order terms, the versal deformation could have
been computed by computing the deformation order by order up to the third order. Many of
our examples had relations which were rational in the parameters, and in those cases, one
could not calculate the versal deformation order by order.

8 Conclusions

Although jump deformations and contractions are inverse concepts, the approaches to their
computation are quite different. Each of these approaches has some advantages and disad-
vantages.

The method of computation of jump deformations by computing miniversal deformations
is guaranteed to determine every object which contracts to the object for which the miniver-
sal deformation is calculated. In this sense, the computation of miniversal deformations
contains all of the deformation information, including all information about contractions.
However, it is not so easy to compute the miniversal deformation except for algebras of low
dimension. To determine all the jump deformations which are contained in the miniversal
deformation is not easy either, mainly because it is not very simple to determine when a
family of deformations are equivalent to each other. The difficulties that arise in using the
miniversal deformation approach are mainly due to computational complexity.

There is no satisfactory general method of computing all contractions directly. Contrac-
tions using diagonal matrices are simple to compute, and allows one to determine some of
the contractions easily. However, as we have seen in this paper, there are cases where a di-
agonal matrix is not sufficient to compute all of the contractions, given a specific choice of
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basis of the underlying space, and it is not clear how to choose a basis that will yield all of
them by this method. On the other hand, while a Lie algebra may have jump deformations
to an infinite number of nonequivalent algebras, a finite dimensional Lie algebra has only
a finite number of contractions. Therefore, by experimenting with different bases, one may
reasonably expect to find them all. Many different approaches, besides the use of diagonal
matrices have been tried, and they have led to very successful results. The main difficulty
with the direct approach to computing contractions is that there is no general method of
determining them all.

The point of view is an important issue as well. For example, if one is interested in
computing all the contractions of the Poincaré algebra, then miniversal deformations are
not the right approach, because you don’t know which algebras to compute the miniversal
deformations of. There is no classification of 10 dimensional complex Lie algebras, so it
is impossible to proceed in this manner. On the other hand, if one is interested in com-
puting the deformations of the Galilean algebra, in particular, to show that it deforms into
the Poincaré algebra, as was done in [11], a computation of the versal deformation is very
useful. In fact, in the article in [11], the versal deformation was not quite computed, but
many deformations of the Galilean algebra were computed using a partial computation of
this versal deformation.

Given the complexity of finding both deformations and contractions, we imagine that
both methods will continue to be valuable in computations. In higher dimensions, there
is no classification of the Lie algebras, so any special method of finding deformations or
contractions of particular Lie algebras may be illuminating. It is possible that in the future,
a simple general method of computing all contractions of a Lie algebra may be discovered.
Advances in computer hardware will make the computation of versal deformations easier in
the future as well.
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